Disruption of interfascicular fiber differentiation in an Arabidopsis mutant.
نویسندگان
چکیده
Arabidopsis develops interfascicular fibers in stems for needed support of shoots. To study the molecular mechanisms controlling fiber differentiation, we isolated an interfascicular fiber mutant (ifl1) by screening ethyl methanesulfonate-mutagenized Arabidopsis populations. This mutant lacks normal interfascicular fibers in stems. Interestingly, some interfascicular cells were sclerified in the upper parts but not in the basal parts of the ifl1 stems. These sclerified cells were differentiated at a position different from that of interfascicular fibers in the wild type. Lack of interfascicular fibers correlated with a dramatic change of stem strength. Stems of the mutant could not stand erect and were easily broken by bending. Quantitative measurement showed that it took approximately six times less force to break basal stems of the mutant than of the wild type. In addition, noticeable morphological changes were associated with the mutant, including long stems, dark green leaves with delayed senescence, and reduced numbers of cauline leaves and branches. Genetic analysis showed that the ifl1 mutation was monogenic and recessive. The ifl1 locus was mapped to a region between the 17C2 and 7H9L markers on chromosome 5. Isolation of the ifl1 mutant provides a novel means to study the genetic control of fiber differentiation.
منابع مشابه
Fibers. A model for studying cell differentiation, cell elongation, and cell wall biosynthesis.
A prominent anatomical feature in the inflorescence stems of Arabidopsis is the presence of fiber cells in the interfascicular regions (Fig. 1). The feasibility of using interfascicular fibers in the inflorescence stems of Arabidopsis as a model for studying cell differentiation, cell elongation, and cell wall biosynthesis has increased significantly since the completion of the Arabidopsis geno...
متن کاملIFL1, a gene regulating interfascicular fiber differentiation in Arabidopsis, encodes a homeodomain-leucine zipper protein.
Arabidopsis inflorescence stems develop extraxylary fibers at specific sites in interfascicular regions. The spatial specification of interfascicular fiber differentiation is regulated by the INTERFASCICULAR FIBERLESS1 (IFL1) gene because mutation of that gene abolishes the formation of normal interfascicular fibers in Arabidopsis stems. To understand further the role of IFL1 in the specificati...
متن کاملRegulating Interfascicular Fiber Differentiation in Arabidopsis, Encodes a Homeodomain–Leucine Zipper Protein
Arabidopsis inflorescence stems develop extraxylary fibers at specific sites in interfascicular regions. The spatial specification of interfascicular fiber differentiation is regulated by the INTERFASCICULAR FIBERLESS1 ( IFL1 ) gene because mutation of that gene abolishes the formation of normal interfascicular fibers in Arabidopsis stems. To understand further the role of IFL1 in the specifica...
متن کاملAlteration of auxin polar transport in the Arabidopsis ifl1 mutants.
The INTERFASCICULAR FIBERLESS/REVOLUTA (IFL1/REV) gene is essential for the normal differentiation of interfascicular fibers and secondary xylem in the inflorescence stems of Arabidopsis. It has been proposed that IFL1/REV influences auxin polar flow or the transduction of auxin signal, which is required for fiber and vascular differentiation. Assay of auxin polar transport showed that the ifl1...
متن کاملDof5.6/HCA2, a Dof transcription factor gene, regulates interfascicular cambium formation and vascular tissue development in Arabidopsis.
Vascular cambium, a type of lateral meristem, is the source of secondary xylem and secondary phloem, but little is known about the molecular mechanisms of its formation and development. Here, we report the characterization of an Arabidopsis thaliana gain-of-function mutant with dramatically increased cambial activity, designated high cambial activity2 (hca2). The hca2 mutant has no alternative ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره 9 12 شماره
صفحات -
تاریخ انتشار 1997